[Pain information pathways from the periphery to the cerebral cortex].

نویسندگان

  • Ryotaro Kuroda
  • Atsufumi Kawabata
چکیده

A recent PET study revealed that the first and second somatosensory cortices (SI, SII), and the anterior cingulate cortex are activated by painful peripheral stimulation in humans. It has become clear that painful signals (nociceptive information) evoked at the periphery are transmitted via various circuits to the multiple cerebral cortices where pain signals are processed and perceived. Human or clinical pain is not merely a modality of somatic sensation, but associated with the affect that accompanies sensation. Consequently, pain has a somatosensory-discriminative aspect and an affective-cognitive aspect that are processed in different but correlated brain structures in the ascending circuits. Considering the physiologic characteristics and fiber connections, the SI and SII cortices appear to be involved in somatosensory-discriminative pain, and the anterior cingulate cortex (area 24) in the affective-cognitive aspect of pain. This paper deals with the ascending pain pathways from the periphery to these cortices and their interconnections. Our recent findings on the protease-activated receptors 1 and 2 (PAR-1, and -2), which are confirmed to exist in the dorsal root ganglion cells, are also described. Activation of PAR-2 during inflammation or tissue injury at the periphery is pronociceptive, while PAR-1 appears to be antinociceptive. Based on the these findings, PAR-1 and PAR-2 are attracting interest as target molecules for new drug development.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New Insights in Trigeminal Anatomy: A Double Orofacial Tract for Nociceptive Input

Orofacial pain in patients relies on the anatomical pathways that conduct nociceptive information, originating from the periphery towards the trigeminal sensory nucleus complex (TSNC) and finally, to the thalami and the somatosensorical cortical regions. The anatomy and function of the so-called trigeminothalamic tracts have been investigated before. In these animal-based studies from the previ...

متن کامل

Sexual Dimorphism in Surface Anatomical Parameters of Human Cerebral Cortex in Different Lebes in Normal and Neurodegenerative Subjects: a Stereological and Macroscopical Study

Purpose: This study sought to determine sex differences in surface anatomical parameters (thickness and surface areas) of human cerebral cortex in different lobes of the left hemisphere in normal right-handed subjects and right-handed subjects suffering from Alzheimer and Parkinson's diseases. Materials and Methods: This cross-sectional descriptive study was performed on 72 normal human brains...

متن کامل

The contributions of anatomical studies to knowledge of perceptual processing

In many contemporary studies and textbooks perceptual processing is treated as a ‘pure sensory’ phenomenon, one that can be understood on the basis of pathways passing information from the sensory periphery to the cerebral cortex, for processing within the cortex and subsequent passage to motor centers or memory stores. However, many physiologists, psychologists and philosophers have recognized...

متن کامل

The enhancing effect of electromagnetic field on the expression of Oligodendrocyte transcription factor 1 and 2 (Olig1/2) in the mice cerebral cortex

Olig1 and Olig2, two transcription factors, play regulatory function in the differentiation and specification of oligodendrocyte progenitor cells (OPCs). In this study the effects of electromagnetic fields (EMF) on total protein concentration ( TPC ) and Olig1 and Olig2 expression in the cerebral cortex of mouse was examined. Twenty-one Balb/c mice were separated into three groups: control, EMF...

متن کامل

Administration of Leukemia Inhibitory Factor Increases Opalin Expression in the Cerebral Cortex of Male Balb/C Mice An In Vivo Study

Background: Leukemia inhibitory factor (LIF) is a neurortophic cytokine which plays an important role in the neural cell survival. Expression of LIF and its receptor, LIFR, in different brain regions has been demonstrated. Based on evidences LIF plays an important role in the modulation of neurogenesis and glial responses to injury. Up-regulation of LIF after central nervous system (CNS) damage...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Yakugaku zasshi : Journal of the Pharmaceutical Society of Japan

دوره 123 7  شماره 

صفحات  -

تاریخ انتشار 2003